7.1 Introduction

- Focus on the distribution function.
- Various possible distribution strategies, and the opportunities and challenges associated with these strategies.
- Two fundamental distribution strategies:
 - Items can be directly shipped from the supplier or manufacturer to the retail stores or end customer
 - Use intermediate inventory storage points (typically warehouses and/or distribution centers).
- Issues with warehouses
 - Manufacturing strategy (make-to-stock vs. make-to-order)
 - Number of warehouses
 - Inventory policy
 - Inventory turn over ratio
 - Internal warehouses vs. outside distributor
 - Owned by a single firm or by a variety of firms
7.2 Direct Shipment Distribution Strategies

● Advantages:
 ● The retailer avoids the expenses of operating a distribution center
 ● Lead times are reduced.

● Disadvantages:
 ● Risk-pooling effects are negated
 ● Manufacturer and distributor transportation costs increase

● Commonly used scenarios:
 ● Retail store requires fully loaded trucks
 ● Often mandated by powerful retailers
 ● Lead time is critical.
 ● Manufacturer may be reluctant but may have no choice
 ● Prevalent in the grocery industry
 ● lead times are critical because of perishable goods.
7.3. Intermediate Inventory Storage Point Strategies

- Variety of characteristics distinguish different strategies.
 - Length of time inventory is stored at warehouses and distribution centers.

Strategies:

- Traditional warehousing strategy
 - distribution centers and warehouses hold stock inventory
 - provide their downstream customers with inventory as needed.

- Cross-docking strategy
 - warehouses and distribution centers serve as transfer points for inventory
 - no inventory is held at these transfer points.

- Centralized pooling and transshipment strategies
 - may be useful when there is a large variety of different products
Traditional Warehousing

- Inventory management and risk pooling key factors
- Other factors also play a significant role
 - Centralized vs Decentralized Management
 - Central vs Local Facilities
Centralized vs Decentralized Management

- **Decentralized system**
 - Each facility identifies its most effective strategy without considering the impact on the other facilities in the supply chain.
 - Leads to local optimization.

- **Centralized system**
 - Decisions are made at a central location for the entire supply network.
 - Typical objective: minimize the total cost of the system subject to satisfying some service-level requirements.
 - Centralized control leads to global optimization.
 - At least as effective as the decentralized system.
 - Allow use of coordinated strategies

- If system cannot be centralized
 - Often helpful to form partnerships to approach the advantages of a centralized system.
Central vs. Local Facilities

- Centralized facilities
 - Employ both fewer warehouses and distribution centers
 - Facilities are located further from customers.

- Other factors:
 - **Safety stock.** Lower safety stock levels with centralized facilities
 - **Overhead.** Lower total overhead cost with centralized facilities
 - **Economies of scale.** Greater economies of scale with centralized facilities
 - **Lead time.** Lead time to market reduced with local facilities
 - **Service.**
 - Utilization of risk pooling better with centralized
 - Shipping times better with local
 - **Transportation costs.**
 - Costs between production facilities and warehouses higher with local
 - Costs from warehouses to retailers lesser with local
A Hybrid Decision

- Some products use centralized strategy while others use local strategy.
- Not an either or decision.
- Varying degrees of centralization and localization due to the varying levels of advantages and disadvantages.
Cross-Docking

- Popularized by Wal-Mart
- Warehouses function as inventory coordination points rather than as inventory storage points.
- Goods arriving at warehouses from the manufacturer:
 - are transferred to vehicles serving the retailers
 - are delivered to the retailers as rapidly as possible.
- Goods spend very little time in storage at the warehouse
 - Often less than 12 hours
 - Limits inventory costs and decreases lead times
Issues with Cross-Docking

- Require a significant start-up investment and are very difficult to manage
- Supply chain partners must be linked with advanced information systems for coordination
- A fast and responsive transportation system is necessary
- Forecasts are critical, necessitating the sharing of information.
- Effective only for large distribution systems
 - Sufficient volume every day to allow shipments of fully loaded trucks from the suppliers to the warehouses.
 - Sufficient demand at retail outlets to receive full truckload quantities
Inventory Pooling – GM Example

- 1,500 Cadillacs parked at a regional distribution center in Orlando
- Await delivery to dealers statewide within 24 hours
- 10% to 11% sales loss because a car is not available…
- Test program expected to:
 - improve customer service
 - boost sales of Cadillacs by 10%
Centralized Pooled Systems Perform Better

- For the same inventory level, a centralized system provides:
 - higher service level
 - higher sales
- Push-pull supply chain
 - Moving from a push supply chain
 - Dealers have to order before demand is realized
 - To a push-pull supply chain
 - Dealers pull from regional distribution centers.
- Implications:
 - End consumers will see better customer service
 - More cars are available to them.
Other Factors

- Will GM sell more cars to GM dealers?
 - Total number of cars ordered by dealers will not necessarily increase, even as customer service increases.

- What about the dealers?
 - Dealers have access to more inventory
 - Potentially can sell more.
 - Levels out the playing field between dealers.
 - Small dealers would favor such a system Competitive advantage of large dealers wiped out
Example of Inventory Pooling

- Two retailers face random demand for a single product.
- No differences between the retailers
- Compare two systems
 - centralized pooled system,
 - retailers together operate a joint inventory facility
 - take items out of the pooled inventory to meet demand.
 - decentralized system
 - each retailer individually orders from the manufacturer to meet demand.
- In both systems, inventory is owned by the retailers
The Two Systems

FIGURE 7-9: The centralized and decentralized systems

FIGURE 7-10: Probabilistic demand faced by each retailer
Other Data

- Wholesale price = $80 per unit
- Selling price = $125 per unit
- Salvage value = $20 per unit
- Production cost = $35 per unit
Costs and Profits in the Two Systems

- Decentralized system
 - Each dealer orders 12,000 units
 - Expected profit per dealer = $470,000, Total = $940,000
 - Expected sales = 11,340 units, Total = 22,680 units
 - Manufacturer profit = $1,080,000

- Centralized system
 - Two dealers together will order 26,000 units
 - Total expected profit = $1,009,392
 - Joint expected sales = 24,470 units
 - Manufacturer profit = $1,170,000
Customer Search

- If the customer arrives at a dealer and does not find the item
 - Switches to another dealer
 - Helps the manufacturer sell more products
- Which system is better under customer search?
 - No impact on the centralized system
Impact on Decentralized System

- If a dealer knows that its competitors do not keep enough inventory
 - this dealer should raise the inventory level to satisfy:
 - its own demand
 - demand of customers who initially approach other dealers with limited inventory.

- If a dealer knows that its competitors has significant inventory
 - this dealer will reduce the inventory level
 - It is not likely to see customers who switch

- Dealer’s strategy depends on its competitor’s strategy.

- Dealers may/may not know their competitor strategy
 - not clear how they decide on their inventory level.
 - not clear about the impact of search on the manufacturer
Nash Equilibrium (Game Theory)

- If two competitors are making decisions, they have reached Nash equilibrium if they have both made a decision
 - Both have decided on an amount to order
 - Neither can improve their expected profit by changing the order amount if the other dealer doesn’t change his order amount.
Example

- $\alpha =$ percentage of customers that search the system
- Each retailer can determine what their effective demand will be if the other retailer orders a specific amount.
- Based on this information, they can calculate how much they should order given any order by their competitors.
 - Best response
Best Response with $\alpha=90\%$

FIGURE 7-11 Retailers’ best response.

FIGURE 7-11: Retailers’ best response
Nash Equilibrium of the System

- Retailer one orders about 20,000 units, retailer two will respond by ordering about 12,000 units.
- If this is the case, then retailer one should modify its strategy and reduce the order quantity.
- No retailer has an incentive to modify its strategy.
- They order amounts associated with the intersection of the two curves.
- Optimal order quantity for each retailer = 13,900 units.
- Total expected profit for each retailer = $489,460.
- Total expected profit = $978,920.
- Total expected sales = 25,208.
- Total amount ordered from the manufacturer = 27,800.
- Manufacturer’s profit = $1,251,000.
Decentralized and Centralized Systems for Search Level of 90%

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Retailers</th>
<th>Manufacturer</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decentralized</td>
<td>978,920</td>
<td>1,251,000</td>
<td>2,229,920</td>
</tr>
<tr>
<td>Centralized</td>
<td>1,009,392</td>
<td>1,170,000</td>
<td>2,179,392</td>
</tr>
</tbody>
</table>

- Centralized system does not dominate the decentralized system.
- Retailers prefer the centralized system.
- Manufacturer’s profit is higher in the decentralized system.
As α Increases

- Each retailer’s order quantity and profit increases.
- Retailers’ total expected profit will be higher in the centralized pooling system than in the decentralized system.
As α Increases

- With larger α
 - retailers will order more in a decentralized system
 - manufacturer will prefer a decentralized system
 - retailers will prefer a centralized system

- With smaller α
 - manufacturer will order less in a decentralized system
 - both the retailers and the manufacturer will prefer a centralized pooling system.
Effect of α on Amounts Ordered

FIGURE 7-12: Amount ordered by dealers as a function of the search level
Critical Search Level

- Presence of a critical search level
 - manufacturer prefers the centralized system below the level
 - otherwise, manufacturer prefers the decentralized system.
- Manufacturer always prefers a higher search level
How Can the Search Level Be Increased?

- Increase brand loyalty
 - customers will more likely search for a particular brand at another retailer if their first choice does not have the product in inventory.

- Information technology initiatives to increase communication between retailers
 - increases the ease with which customers can search in the system
 - higher likelihood that customers will search in the system
Transshipment

- Shipment of items between different facilities *at the same level in the supply chain* to meet some immediate need
- Occurs mostly at the retail level
- Can be achieved:
 - with advanced information systems
 - Shipping costs are reasonable
 - Retailers have same owner
Retailers with Different Owners

- May not want to do transshipments
- Distributor Integration strategies may be adopted
- Not clear regarding inventory levels
 - A retailer’s strategy depends on competitors’ strategies
Which Strategy to Adopt?

- Different approaches for different products
- Factors:
 - Customer demand and location
 - Service level
 - Costs => transportation & inventory costs
 - Demand Variability
Summary of the Distribution Strategies

<table>
<thead>
<tr>
<th>Strategy → Attribute ↓</th>
<th>Direct shipment</th>
<th>Cross-docking</th>
<th>Inventory at warehouses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk pooling</td>
<td></td>
<td></td>
<td>Take advantage</td>
</tr>
<tr>
<td>Transportation costs</td>
<td></td>
<td>Reduced inbound costs</td>
<td>Reduced inbound costs</td>
</tr>
<tr>
<td>Holding costs</td>
<td>No warehouse cost</td>
<td>No holding costs</td>
<td></td>
</tr>
<tr>
<td>Allocation</td>
<td></td>
<td>Delayed</td>
<td>Delayed</td>
</tr>
</tbody>
</table>
Summary

- Critical to implement effective distribution strategies regardless of the total level of supply chain integration.

- Strategies:
 - direct shipping
 - warehouses or distribution centers

- Related decisions
 - Should there be many or only a few warehouses or DC’s?
 - Should inventory be held at these locations, or transshipped?
 - As a retailer, does it make sense to participate in a centralized inventory pooling system?
 - What about a transshipment system?